Outlier Detection on Mixed-Type Data: An Energy-Based Approach

نویسندگان

  • Kien Do
  • Truyen Tran
  • Dinh Q. Phung
  • Svetha Venkatesh
چکیده

Outlier detection amounts to finding data points that differ significantly from the norm. Classic outlier detection methods are largely designed for single data type such as continuous or discrete. However, real world data is increasingly heterogeneous, where a data point can have both discrete and continuous attributes. Handling mixed-type data in a disciplined way remains a great challenge. In this paper, we propose a new unsupervised outlier detection method for mixed-type data based on Mixed-variate Restricted Boltzmann Machine (Mv.RBM). The Mv.RBM is a principled probabilistic method that models data density. We propose to use free-energy derived from Mv.RBM as outlier score to detect outliers as those data points lying in low density regions. The method is fast to learn and compute, is scalable to massive datasets. At the same time, the outlier score is identical to data negative log-density up-to an additive constant. We evaluate the proposed method on synthetic and real-world datasets and demonstrate that (a) a proper handling mixedtypes is necessary in outlier detection, and (b) free-energy of Mv.RBM is a powerful and efficient outlier scoring method, which is highly competitive against state-of-the-arts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

An Effective Pattern Based Outlier Detection Approach for Mixed Attribute Data

Detecting outliers in mixed attribute datasets is one of major challenges in real world applications. Existing outlier detection methods lack effectiveness for mixed attribute datasets mainly due to their inability of considering interactions among different types of, e.g., numerical and categorical attributes. To address this issue in mixed attribute datasets, we propose a novel Pattern based ...

متن کامل

A statistical test for outlier identification in data envelopment analysis

In the use of peer group data to assess individual, typical or best practice performance, the effective detection of outliers is critical for achieving useful results. In these ‘‘deterministic’’ frontier models, statistical theory is now mostly available. This paper deals with the statistical pared sample method and its capability of detecting outliers in data envelopment analysis. In the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016